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Introduction:  The transfer function expressions for the transmission of small signal 
amplitude and phase modulations through a resonant cavity are often quoted in the literature 
without a derivation.  The expressions are derived here; both un-normalized and normalized with 
respect to the steady-state resultant voltage phasor.  The un-normalized transfer functions when 
applied to in-phase (I) and quadrature (Q) components are suitable for large signal analysis of 
cavity turn-on transients. 
 

In-Phase Component (or small signal amplitude) Modulation: 
Assume that a current source is driving a cavity which is represented as a parallel RLC circuit 
(see Appendix A for the impedance equations and Appendix B for the steady state vector 
diagram).  Furthermore, assume that this current source is amplitude modulated.  The amplitude 
modulation can be expressed as: 
 

( ) ttaIti RFam ωω coscos1)( ⋅+=   (1) 
 

where I  is considered the un-modulated current magnitude, a  is the magnitude of the amplitude 
modulation at frequency amω , and RFω  is the RF operating frequency.  Using trigonometric 
identities, (1) can be rewritten as: 
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Using phasor notation, the current can be written as ( )ti RFeiti ωˆRe)( =  where the phasor î  is 
expressed as: 
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with 1−=j .  Thus, the amplitude modulation expressed in the right hand term of (3) can be 
represented as two counter-rotating phasors, tj ame ω  and tj ame ω− .  These phasors rotate in opposite 
directions at the modulation frequency. 
 
Using a similar phasor notation, the cavity voltage can be represented as ( )tj RFevtv ωˆRe)( = .  If 
the driving current, )(ti , is applied to the cavity, the resulting voltage phasor is determined via 
the cavity impedance by: 
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where  
 

)(ImRe amRF jjZZjZZ ωω +=+= +++    (5) 
and 

)(ImRe amRF jjZZjZZ ωω −=+= −−−    (6) 
 

The right hand term of (4) relates the transformation of amplitude modulation of the driving 
current into modulation of the cavity voltage.  Using the definition of the complex exponential, 
the right hand term of (4) can be expressed as: 
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By making use of the trigonometric identity, 

 
( )CBA tCtBtA θωθωθω +=−−+ cos)sin()cos(      (9) 

where 22 BAC +=   and 
A
B

C
1tan −=θ  , 

 
the real and imaginary terms of (8) can be condensed resulting in 

 
)cos()cos(ˆ QamQIamI tvjtvv φωφω +⋅++=    (10) 

where 
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and 
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2
−+ −= ZZaIvQ  , ( )( )*arg −+ −⋅−= ZZjQφ    (12) 

 
where *−Z  denotes the complex conjugate of −Z . 
 
Thus, it is now clear that amplitude modulations of the driving current are transmitted into in-
phase and quadrature modulations of the cavity voltage.  This process can be described in terms 
of the following transfer functions: 
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where )(sGii  denotes transmissions of in-phase driving current modulations to in-phase cavity 
voltage modulations, )(sGiq  denotes transmissions of in-phase driving current modulations to 
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quadruature cavity voltage modulations, and the LaPlace variable, s , is defined in terms of the 
modulation frequency, amis ω= . 
 
Using equations, (5), (6), (11), and (12) the transfer functions can be expressed as: 
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Normalizing with respect to the un-modulated response, or the steady-state voltage phasor, 
results in a set of normalized transfer functions: 
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The above transfer function expressions can be expanded using the expression for the cavity 
impedance, 
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The second expression in (18) utilizes the damping rate parameter, 
E

o

Q τ
ω

σ 1
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== , which defines 

the decay rate of the cavity voltage (electric field) impulse response. 
 
However, simpler expressions for the transfer functions can be found if the approximated cavity 
impedance expression is used.  Using, 
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equations (14)-(17) become: 
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Often the expressions for the transfer functions make use of the Hermitian property, 

)()( * ωω ZZ =− , of the cavity impedance.  Thus, equations (14)-(17) are often written as: 
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However, care must be exercised when using these equations with the approximated cavity 
impedance function since )()( * ωω ZZ ≠− when )(ωZ is approximated by (19).  Thus, if the 
approximated cavity impedance function of (19) is used, the proper forms of the transfer 
functions are (14)-(17) while properly substituting for )(* ωZ  with (20). 
 
 



Quadrature-Component (or small signal phase) Modulation: 
Using a similar process as used for describing amplitude modulations, the transfer functions for 
quadrature-component modulation can be derived.   
 
Quadrature-component (or small-signal phase) modulation can be expressed as: 
 

ttati RFamQQ ωω sincos)( ⋅−=    (18) 
 
The use of the negative sign will become clear from the phasor notation which can be expressed 
as: 
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representing the modulating phasor. 
 
Thus again, the modulating phasor is the sum of two counter-rotating phasors; except this time 
they are both shifted by 90 degrees.  It is the factor of j  which has to be accounted for properly 
to get the right sign for the transfer functions.  Again, in general (if *−+ ≠ ZZ ) the resultant 
modulation of the cavity voltage has an in-phase and quadrature component. 
 
Again, the resultant cavity voltage modulation phasor can be expressed as: 
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which becomes similar to (8) except for the factor of j , 

 
Again, if the resultant is written in terms of in-phase and quadrature components, then it is clear 
from comparing (22) to (8) that the transfer functions for quadrature-component modulation are 
identical to those for the in-phase component modulation except for the negative sign introduced 
by the 2j  factor in the real term resulting from (22). 
 

)()( sGsG iqqi −=    and  )()( sGsG iiqq =     (23) 
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Application: 
Figure 1 on the right shows a 
comparison between a reduced 
model simulation and a full model 
simulation.  Both simulate the turn-
on transients of a parallel resonant 
circuit voltage response to a 
stepped driving current with a 
frequency that is unequal to the 
circuit resonant frequency.  The 
ciruit parameters simulated are   

610532 ⋅⋅= πωo , 310202 ⋅⋅=∆ πω , 
3500=Q , and 100/ =QR .  The 

amplitude for the reduced model 
simulation was determined by 
taking the square root of the sum of 
the squares of I and Q.  The phase 
was determined by taking the inverse 
tangent of Q/I. 
 
 
Summary: 
Although the transfer functions for IQ modulations in a resonant circuit already exist in the 
literature, the derivation is not often explained.  Furthermore, the literature often states that the 
transfer function expressions result from the unapproximated cavity impedance; leading one to 
attempt to reduce the resulting fourth order equation to a second order equation.  The expressions 
in the literature are actually the result of using the approximated cavity impedance for which care 
needs to be exercised in using the quoted formulas that exploit the Hermitian property of the 
unapproximated cavity impedance.  It is hoped that the derivation presented here will be useful 
to those studying the transfer functions.  
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Figure 1:  Matlab simulation of the reduced model IQ transfer 
functions (red traces) compared to a full model simulation (blue 
trace). 



Appendix A – Cavity Impedance Equations 
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Using the following relations:  
LCo
1

=ω  is the natural resonant frequency, and  RCQ oω=  is 

the quality factor, the impedance can be expressed as: 
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Multiplying numerator and denominator by ⎟⎟
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The second term can be represented by a complex exponential, 
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where the magnitude, M , is given as 
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and the angle, Zφ , which is a function of ω , satisfies 
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where ωωω −≡∆ o  and the approximation is found by using the first 2 terms of a Taylor Series 
expansion in terms of ω . 
 
Thus, the impedance can be expressed as 
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In terms of the LaPlace variable, ωjs =  , the impedance can be written from (A2) as 
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Appendix B – Steady-State Vector Diagram 
 

 
Sφ : The synchronous phase angle for below/(above) transition is defined as the +/(-) phase 

of the beam relative to the positive/(negative) sloped zero-crossing of the RF voltage. 
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Zφ : The cavity impedance phase angle is defined as the phase of the RF cavity voltage 
relative to the total cavity drive current.  Thus, the total current, beam plus generator, is 
represented as Zi

TT eII φ−=ˆ  
 

Lφ : The load impedance phase angle is defined as the phase of the RF generator current 
relative to the RF cavity voltage.  Thus, the generator current is represented as 
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GG eII φ=ˆ  

 
cavV : The cavity voltage is considered to be at a reference phase of 0. 

 

R
V

I cav
o ≡  :  the generator current required to produce cavV  when the cavity is tuned to 

resonance (when 0=Zφ ) 
 
Thus, to make cavV  when the cavity is driven off resonance: 
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Now, since the total current is the sum of the generator plus beam image currents: 
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separating into real and imaginary components: 

 
Real components:     oSBLG III =− φφ sincos     (B3) 

 
Imaginary components:    ZoSBLG III φφφ tancos)/(sin −=+−     (B4) 
 

Thus, given BI , Sφ , and cavV  and using Lφ  as a free parameter, the generator current, GI , and 
cavity impedance angle, Zφ , can be determined.  Alternatively, one can use Zφ as the free 
parameter and thus determine GI  and Lφ . 
 
Using Lφ  as the free parameter: 
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Then from (B4) we obtain:  
 

( ) SLS
o

SBLG
Z YY

I
II

φφφ
φφ

φ cos)/(tansin1
cos)/(sin

tan −++−=
−+−

=    (B6) 

 

 where 
o

B

I
IY ≡   (B7)  is called the beam loading factor  

 
Using Zφ  as the free parameter: 
 
 Solving (B4) for LGI φsin  and then dividing this by LGI φcos  from (B3): 
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Vcav: cavity voltage

IG: generator current

L: generator load angle

IB: beam image current

s: synchronous phase angle

IT: total cavity current

z: cavity detuning angle

Cavity Vector Diagram


